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ABSTRACT

Stents for angioplasty have been extensively
used in the treatment of cardiovascular diseases;
they should be flexible during the implant
procedure and stiff after the implant. The design
criteria depend on the stent material
distribution. The objective of this work is to
apply topology optimization as a mechanical
design tool in order to provide the best material
distribution of a stent. In this context, the
flexibility and hardening are formulated in
different objective functions to be maximized.
The idea of the procedure is to compute the
sensibility of each element from the design
space by using the finite element method.
Subsequently, the calculated sensibility is used
to update the stent material distribution. The
updating of the stent topology is based on the
optimality criteria by computing the Lagrangian
multiplier from the volume constraint. The
optimization subroutines have been
implemented in Matlab® 6.5. The computation
of the plastic and elastic strain energy to be
used in the -calculation of sensibility are
extracted from software ANSYS® 6.0 and
Matlab® 6.5. The results illustrate the topology
of the optimized stent cell.

NOMENCLATURE

A = gradient of objective m = move limit
C(x) = compliance

D = gradient of f

E = Young’s Modulus
f = volume fraction

F = force vector

K = stiffness matrix

L = stent length

t = stent thickness
U = displacement

V = total volume
V(x) = stent volume
w = stent width

W = hardening work

p = penalization power

INTRODUCTION

The heart diseases have been one of the
greatest causes of death among adults around
the world. In most cases, the problem arises
when the coronary arteries, the arteries that
supply blood to the heart muscle, get blocked
due to accumulation of certain substances such
as cholesterol [1]. In the past, most of
cardiovascular diseases were treatable through a
by-pass surgery. Nowadays, a surgery free
catheter-based procedure has been extensively
used to unblock the blocked artery. In this
procedure, a thin tube called stent is placed in
the region of the unblocked artery to prevent
closure.

There are many criteria to be considered in
the stent design [2-4]. The major role of a stent
is to prevent restenosis, which is the re-closure
of the unblocked artery. Due to this, the stent
should be sufficiently stiff in order to avoid any
artery diameter reduction after the implant. On
the other hand, the stent should be also flexible
during the implant procedure. If the stent is not
flexible, it could not track the catheter during
the navigation inside the blood vessel.

x = relative density 2 = measured load
Greek Symbols b = buckling

€ = strain f = flattening

A = Lagrangian multiplier p = plastic range
o =yield stress t = tangent
Subscripts Superscripts

0 = solid material j = index iteration
1 = applied load T = transpose
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The material and the geometry of stents are
the parameters that control explicitly their
flexibility and stiffness. The influence of these
parameters on the design criteria of stents has
been studied in several works published in the
literature [2-5]. In these applications, nonlinear
finite elements models or experimental
techniques are usually used in order to simulate
the response of a stent. Subsequently, the stent
designer creates a geometrical model based on
the analysis of the response that was simulated.
The intuition and experience are the tools that
the designer uses to create the optimized stent
geometry. However, there is no information
concerning the application of the numerical
optimization techniques to the design of stents.

Topological Optimization is one of optimal
structural design tools that may be used for
improving the stent geometry. The idea of the
procedure is to solve the inverse problem of
obtaining the best material distribution of a
structure with specific properties [6]. For linear
problems, the procedure has been usually
applied for the maximization of stiffness and
flexibility [6-8]. Recently, topology
optimization has also been used for the
optimization of structures subjected to plastic
strain [9-10]. Then, this technique may be also
applied to the definition of the stent material
distribution.

The main objective of this work is to
employ topological optimization as a
geometrical design tool of stents made of
stainless steel 316L. The hardening of the stent
structure after the implant and its flexibility
during the implant procedure will be optimized
separately by using different objective
functions. A Bilinear Isotropic Hardening
model will be used as the constitutive law for
the stainless steel 316L. A description of the
main models used in the analysis of stents and
the formulation of the topology optimization
problem will be shown in this work. The
discussion of the obtained results and the final
conclusions are described at the end of paper.

MODELS AND DEFINITION OF STENTS

What are Stents

A stent may be defined as any device with
circular section used to reinforce the internal
wall of a vessel [5]. Figure (1) illustrates a
Computer Aided Design model of a stent. As
can be seen, its structure is formed by a

repetitive geometrical pattern, known as cells
[3]. After the implant, the stent diameter is
usually two to four times larger than the
original one [2]. In this phase, the stent external
surface contacts the internal surface of the
vessel wall. The importance of this contact
between stent and vessel is to prevent restenosis
after the implant.

Fig. 1. Three-dimensional stent [3].

The stents design conception depends on
the material used in their manufacture. In most
cases, metallic stents either are made of
stainless steel or are manufactured from a NiTi
alloy (Nitinol). Nitinol stents are super-elastic,
self-expanding and adapt better to the artery
wall anatomy. Stainless steel stents are
subjected to plastic strain. In this case, an
expandable balloon placed at the end of catheter
inflates and deforms plastically the stent [4]. In
this work, it will be emphasized only the design
characteristics of stainless steel stents.

Models of Stents

After the implant, the stent will be subjected
to a distributed compressive load, which is
applied by the artery wall. In practice, this load
will change depending on the artery anatomy
shape [4]. In this situation, there will be tension,
torsion and bending components in the
cylindrical three-dimensional stent model
shown in fig. (1). Nonlinear finite elements
analysis provides the stress and strain
distributions of these highly complex loading
components [3-4].

It can be demonstrated that the order of
magnitude of the stent bending component is
usually much larger than the others load
components [4]. The major effects of this
component are buckling and flattening of the
stent circular cross section. Consider the plane
model of one cell shown in the Fig. (2). A first-
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order approximation of the buckling stiffness
for a load applied in the plane of the stent cell
can be given by [4]:

Ewlt

5 (1)

KbKXZ

and, similarly, the stent flattening stiffness, Kj,
for a normal loading applied to the cell can be
approximated by:

Ky o= )

where E is the Young’s Modulus of the
material, t is the tube thickness, w is the stent
cell width and L the cell length in the
longitudinal direction. Equation (1) illustrates
that the contribution of t in the stent buckling
stiffness, Ky, is negligible when compared to
the parameters w and L. This proves that the K,
depends on the geometrical parameters of the
cell model shown in the Fig. (2). The stent
thickness t, which is normal to the cell plane
does not contribute effectively in the calculation
of Ky, [4].

Fig. 2. Plane model of the stent cell [3].

Equation (2) shows that the stent thickness
has a major role in the calculation of the
flattening stiffness. The importance of the
geometry of the stent cell plane model in the
derivation of Ky is negligible [4]. However, this
design problem will not be studied in this work.
Note that the Egs. (1) and (2) are only good
approximations of the stent stiffness within the
linear elastic range. For cells with more
complicated geometry, subjected to plastic
strain, Ky and K, should be estimated using the
finite element method [4-5].

TOPOLOGICAL OPTIMIZATION OF THE
STENT CELL PLANE MODEL

Formulation of the Problem with
Maximum Hardening

The stent should be stiff after the implant
procedure. Physically, the topology of an
ideally stiff stent has minimal strain energy. It
means that the stent should not deform once
implanted in the artery. Mathematically, this
topology optimization problem is defined by
[6]:

Minimize: C(x)=UTKU 3)
Subjected to: V(TX) =f 4
KU=F (5)
0<x, <x=1 6)

where C(x) represents compliance or elastic
strain energy of the structure. The variable K
denotes the global stiffness matrix of the finite
element model, U is the displacement vector
and F the load vector applied to the structure.
During the optimization, the user selects the
optimal topology volume V(x). This parameter
divided by the design space volume, V, defines
the optimal topology volume fraction, f. The
relative density of the structure finite elements,
X, is the design variable of this optimization
problem.

This formulation would be valid if the stent
was only subjected to elastic strains. During the
expansion of the balloon, the stent is subjected
to an outward internal pressure in the radial
direction. This radial pressure increases the
stent diameter and generates plastic strain
regions in all cells. The role of these plastic
strain regions is to avoid restenosis of the blood
vessel after the implant.

This state of irreversible strain is provided
by the hardening of the stainless steel stent [11].
The larger the hardening, the larger will be the
stresses needed to deform plastically the stent
material. Indeed, the stent hardening improves
its ability of reinforcement of the artery wall
after the implant.

In this situation, it is convenient to
maximize the hardening work of the stent, W,
during the expansion of the balloon. Therefore,
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instead of the Eq. (3), the objective function to
be maximized will be given by:

W= [erE,e,dv )

\%

and the Eq. (7) also represents the plastic strain
energy of the stent after the implant. The
variable €, is the plastic strain field in the stent
material due to the expansion procedure. The
Plastic Modulus, E,, is defined by:

E. = 3

where E, denotes the Tangent Modulus obtained
from a Bilinear Isotropic Hardening model [9].
In this constitutive law model, the elastic and
plastic ranges are approximated by the Tangent
Modulus, E;, and the Young’s Modulus, E,
respectively.

The numerical implementation of topology
optimization procedure defined by the Eq. (8)
subjected to constraints (4), (5) and (6) requires
that a material interpolation law be used. In this
work, it will be used the power-law approach
[6]. For the Bilinear Isotropic Hardening model,
the material properties and relative density, X,
of each finite element are modeled by [12]:

E=(x)'E, ©9)
E, =(x)"Ey (10)
c=(x)o, (1)

where o is the yield stress of the elastic-plastic
material. The parameter p is the penalty power
usually equals to 3 (three) [6]. The subscript 0
(zero) represents the constant properties of the
solid material with relative density equals to 1.

Formulation of the Problem with
Maximum Flexibility

The flexibility of the stent during the
implant procedure should also be incorporated
in the formulation of the topology optimization
problem [2-4]. For this purpose, consider the
elastic solid body in static equilibrium shown in
Fig. (3), subjected to two loads, F, and F,. The
load F; produces a displacement field U; and,
analogously, the load F, generates a
displacement U, in the elastic solid. In this

context, the load F, has magnitude |F;| but, the
load F, is a unit dummy force. A definition of
flexibility can be given by [7-8]:

C(x)=UJKU, (12)

This equation is also known as mutual mean
compliance. The equation (12) represents a
measure of the deformation of the structure in
the direction of the unit dummy load, F,, when
the load F; is applied [7]. In this sense,
deformation in the direction of the load F, due
to load F, is interpreted as the flexibility of the
structure. Therefore, a highly flexible structure
has a large value of the mutual mean

compliance.

F,

Fig. 3. Concept of flexibility of an elastic body.

The problem of the maximization of the
flexibility of a stent is not as simple as the
minimization of Eq. (3). If no limit is imposed
during the maximization of the Eq. (12), the
structure will deform indefinitely when the load
F, is applied. In this situation, mutual mean
compliance will be close to infinity. One way to
deal with this ill-conditioned problem is not let
the structure to deform indefinitely. For this, the
stiffness represented in the Eq. (3) should be
considered simultaneously in the formulation of
the structural flexibility. The optimization
problem now will be [8]:

UJKU
Minimize: ——IT 2 (13)
U KU
Subjected to: @: f (14)
KU, =F (15)
K,U=F (17)
0<x, $£x=1 (18)
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where the constraints (15) and (16) are
respectively the equilibrium equations of the
finite elements model of the structure due to
two loads, F, and F,, used in the calculation of
U,'KU,. The solution of the Eq. (17) provides
the displacement field U to be used in the
computation of strain energy U'KU. For the
calculation of U; and U,, it is used the same
finite elements model and boundary conditions,
subjected to two different loads cases, F; and
F,. In the derivation of U, the stiffness matrix
K, is not the same once the boundary conditions
may be modified.

This formulation will be adopted in this
work as a topological design model of the stent
cell flexibility. Once again, the power-law
approach will be used for the modeling of the
material properties. The flexibility of the stent
will be defined for the elastic range. In this
case, the Young’s Modulus defined in the Eq.
(9) will be the only material property to be
considered.

NUMERICAL IMPLEMENTATION OF THE
PROCEDURE

The stent volume fraction is the only active
constraint of both formulations above
described. Furthermore, the maximization of
hardening and the maximization of the
flexibility have a large number of design
variables. These design variables are the
relative density of each finite element from
design space. For problems of this nature, the
optimality criteria method is the optimizer more
eficient and simpler to obtain the optimal
solution [6-8]. Therefore, it will be used in this
work in order to provide the stent cell optimal
topology.

The optimality criteria method is based on
the Kuhn-Tucker conditions applied to
Lagrangian of the objective function and
constraints [6]. For both formulations,
maximization of the hardening and flexibility, it
can be demonstrated that [6,9]:

A+3D=0 (19)

is the minimum of both optimization problems.
This is the solution from design space where the
derivative of the Lagrangian with respect to the
relative density, X, vanishes [6,9]. In particular,
for each problem, the parameter A represents
the gradient of the objective function defined in
the Eq. (7) or (13). The parameter D denotes the

derivative of active volume constraint, written
as:

V(x(\)-fV =0 (20)

The value of the Lagrangian multiplier A4
given by the solution of the Eq. (20) provides
the minimum of the optimization problem
stated in the Eq. (7) or (13). This concept will
be used in this work in order to derivate an
updating scheme of the stent cell topology.
Equation (19) multiplied by —1 denotes the
gradient of both constrained formulations.
Geometrically, Eq. (19) represents the steepest
descent direction in the design space. In this
context, an updating scheme of the relative
density will be defined by [7]:

xj+1=xj—(Aj+ijj) 21)

The Eq. (21) is a commonly used
representation of most numerical optimization
algorithms [13]. Although Eq. (21) is the
simplest way of updating the design variables, it
is enough efficiency in the topology
optimization field [7]. The index j denotes the
number of iteration used in the updating of the
relative density. Unfortunately, Eq. (21) does
not guarantee a stable convergence since abrupt
changes may occur in the formation of the
topology. In order to stabilize the formation of
the topology, the following procedure was used
in this work [6]:

max(0.001,x! —m) < x*! <min(l,x) + m) (22)

where m represents a limit value of the change
of relative density. The role of this parameter is
to avoid the formation of discontinuities in the
topology during the optimization [6]. The
choice of the value of this parameter depends
on the behaviour of objective function to be
optimized. In Eq. (22), 0.001 and 1 are
respectively the minimum and maximum values
which the relative density can assume (side
constraints).

The Fig. (4) illustrates the steps of the
topology optimization algorithm to be used in
the problem of the flexibility or hardening.
Initially, all finite elements from design space
have relative density equal to volume fraction
chosen by the user. For the maximization
problem of the flexibility, the nodal
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displacement fields U;, U, and U are obtained
by solving the equilibrium equations (15), (16)
and (17). These displacements will be extracted
from a subroutine implemented in the Matlab®
6.5 [6]. For the hardening problem, it will be
used the finite element software ANSYS® 6.0 in
order to extract the plastic strain field of the
stent design space. Subsequently, the objective
function sensibility is calculated and filtered
[6]. Finally, the Lagrangian multiplier A from
volume constraint is determined using a bi-
sectioning algorithm and the topology of stent
cell is updated according to Eq. (22). The
subroutines of filtering, optimization and
updating of the stent cell topology have been
implemented in Matlab® 6.5 [6].

Original design space

—» Finite element analysis

Sensitivity analysis

Filtering of sensibility

Updating of topology

Convergence

Fig. 4. Flowchart of the optimization algorithm.

STRUCTURAL MODEL FOR THE STENT
CELL TOPOLOGY OPTIMIZATION

It has been shown in Fig. (2) a plane model
for the stent cell that simulates the expansion
process due to pressure applied by a balloon [3].
This figure compares the cell shape before and
after the expansion. The stent cell shown in this
figure has two symmetrical legs in the vertical
direction . It can be seen some regions in these
legs where the stress level exceeds the yield
stress. The hardening of these plastic strain
regions provides the capacity to support the
vessel wall after the implant.

The two symmetrical legs shown in the Fig.
(2) are linked by two curved structures in the
longitudinal direction [3]. The major role of

these curved linkage elements is to improve the
flexibility of the stent. A flexible linkage
element should absorb a large amount of elastic
deflection energy. A better tradeoff between the
flexibility and stiffness of the stent cell depends
on the combination of the legs geometry with
the linkage elements [2-4].

This design conception will be used in this
work to create the optimal topology of the stent
cell by considering each criteria separately. For
the stent hardening problem, the Fig. (5)
illustrates the design space and the boundary
conditions that simulate the balloon expansion
[3]. Because of the symmetry of the stent cell, it
will only be considered the half of its design
space. Most of commercial stents have a
volume fraction equal or smaller than 20% of
the original design space volume [2]. This same
value will be used in this work to avoid the
stent recrossability.

UIA

OO 8
U] v 8
Fig. 5. Model for the stent hardening.

Table 1. Physical properties of the stent [2].

Property Magnitude
Young’s Modulus 190GPa
Tangent Modulus 1300MPa

Yield Stress 250MPa
Poisson’s ration 0.3
Stent cell length 0.5mm

Stent cell high 0.4mm

Table (1) shows the geometrical parameters
as well as the material properties to be used for
this problem [3]. The displacement U; applied
to the botton and upper right corner of the
design space is equal to 0.15mm. This load
simulates the effect of the stent cell expansion
during the implant. Nonlinear finite element
analysis from software ANSYS® 6.0 simulates
this expansion process several times during the
optimization.
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The physical model for the maximization of
the flexibility of the stent cell is shown in the
Fig. (6). The length and the high of this design
space are respectively, 0.30 mm and 0.20 mm.
For this case, the only material property to be
used is the Young’s Modulus from Table (1).
The vertical load F; simulates the catheter
movement effect during the stent navigation
into the vessel. The dummy load F, is the
desirable direction of the stent flexibility. It is
applied at the middle of the bottom edge of the
design space shown in the Fig. (6). Moreover,
the flexible stent cell should maintain its shape
when subjected to deflection caused by the load
F, [8]. Then, the cell stiffness should also be
maximized due to the compressive load F [8].

Fy
v
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Fig. 6. Model for the stent flexibility.

ANALYSIS OF THE RESULTS

Figure (7) shows the optimal topology of
the stent cell with maximum hardening. A mesh
of 24 by 20 solid finite elements with 4 (four)
nodes in plane stress state was used for the
discretization of the stent cell design space. For
this situation, the objective to be maximized is
defined in the Eq. (7) subjected to constraints
(4), (5) and (6). The procedure has converged
with 146 iterations by employing a limit m
equals to 0.05. This value of move limit, 0.05,

has been selected based on the observation of
the convergence of the stent cell topology. The
topology shown in the Fig. (7) has an error
equals to 0.3% between two steps of solution.

The topology optimization procedure with
maximum hardening distributed material in the
regions of plastic strain of the stent cell. It is
observed in Fig. (7), the presence of material
connecting the application point of the
displacements U, to the middle of the left edge
that is supported only in the vertical direction.
Furthermore, there is material in the right edge
of the stent cell optimal topology. The presence
of this right edge does not allow any
displacement in the horizontal direction. The
combination of these two material distribution
patterns shown in the Fig. (7) maximizes the
stent cell hardening.

Fig. 7. Cell topology with maximum hardening.

The optimal topology of the stent cell with
maximum flexibility and stiffness is shown in
Fig. (8). For this problem, it was used a mesh of
30X20 solid finite elements of 4 (four) nodes in
plane stress state. This topology converged with
3397 iterations by using a limit m equals to
0.0005. The limit m chosen for this situation is
considerably less than the value of m used in
the last situation (0.05). Due to sudden
behaviour of the flexibility in the objective
function (13), it was necessary to use a minor
value of m in order to prevent a divergence in
the solution process [8].

The topology with maximum stiffness and
flexibility illustrated in the Fig. (8) is more
complex than the topology shown in Fig. (7).
In this situation, there is more material in the
region of the application point of the load F.
The role of this local material distribution is to
improve the stiffness of the stent cell. On the
other hand, there is material connecting the
point of the load F, with the left edge. It can be
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seen the presence of a hinge, close to left edge.
Indeed, this topology pattern improves the
flexibility of stent cell without damaging the
stiffness of the topology.

Fig. 8. Cell topology with maximum flexibility.

The optimal topology of the stent cell is the
combination of the stiff and flexible topologies
shown in the Figs. (7) and (8). The geometries
shown in these figures can be manufactured by
using the laser cutting process [5]. The flexible
linkage elements of commercial stents shown in
the Fig. (2) do not have hinges [2]. However,
these hinges improve the flexibility of the cell
in the direction of the load F,.

CONCLUSIONS

A methodology for the optimal topology
design of the stent cell plane model was
proposed in this work. The stent cell topology
with maximum hardening and flexibility were
computed and studied separately. These
topology patterns were generated based on the
design conception of a stent. For the case that
considers only the hardening, the procedure
distributed material where the plastic strain
fields were larger. In the situation involving the
flexibility and stiffness, the methodology have
emphasized both design criteria. Then, it has
been proved that this technique can serve as a
stent cell design tool.

Another stent cell design conception is to
consider hardening and flexibility in a unique
topology optimization problem. The stent cell
optimal topology that incorporates these design
criteria simultaneously should be different when
compared to the topologies shown in this work.
In the future, others boundary conditions as
well as the hardening added to flexibility will
also be considered in the stent cell topology
optimization problem.
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